Blog Save Time Explaining the “Why” Behind Your Dashboard

Your CEO sends you an email and asks you to explain a dashboard.

You do. They ask another question. You tell them you’ll do some digging and get back to them.

Yet another task added to your already long list.

But what if you didn’t have to field these ad-hoc requests?

What if your dashboard could explain the “why” behind the data for your stakeholders?

You can’t possibly find and explain all the insights in your company’s massive data-sets — you don’t have the time.

That’s why we’ve added these new features to our data storytelling technology: driver analysis and custom insights.

Driver Analysis

Driver analysis, sometimes referred to as contribution analysis or attribution analysis, helps explain the “why” behind the facts and figures that are called out in the story, specifically the drivers of change.

We’ve released a handful of new insights for discrete and continuous narratives that point out this information, making it easy for the reader to understand exactly what’s going on in the data and why it happened.

You can configure these drivers under the “driver” tab in the settings modal.

With Dimension Drivers, users can choose between three types of analysis (count, individual % and cumulative %), the threshold for how many drivers to call out, and also whether or not to include offsetters.

Here’s an example of how it might look in your story:

Discrete example explaining total profit: The profit of $268,224 was driven by California with $70,601, New York with $67,907 and Washington with $31,341 and offset by Texas with -$21,311, Ohio with -$16,023 and Pennsylvania with -$14,103.

Continuous example explaining change in total sales over the last month: The $7,451 increase in sales over the most recent month was driven by Furniture (+7.34% from $84,229 to $90,411) and Office Supplies (+5.31% from $68,568 to $72,206) and was offset by Technology (-2.92% from $81,216 to $78,848).

You can also show sub drivers in your story (see sub drivers in italics below):

The profit of $123,856 was driven by Technology with $64,286, led by Phones with $19,287, Accessories with $17,743 and Copiers with $15,706; Office Supplies with $51,112, led by Paper with $15,098, Binders with $12,747 and Storage with $8,173; and Furniture with $8,458, led by Chairs with $11,930 and Furnishings with $6,552.

Verbosity is a setting in the Language tab, but adjusting this changes the way the driver content is written. You’ll see more information in parentheses with higher verbosity, and you get a more concise version of the driver analysis with lower verbosity.

Metric Drivers were created as another method to explain the impact of a component metric on the overall metric. In this example, operating expenses and non operating expenses make up total expenses, so we can see how each contributes to the total.

Heres an example of what it might look like in your story: The $2.1 million in total expenses was driven by operating expenses with $1.8 million and non-operating expenses with $335,188.

Custom Insights

It’s important to have a human touch when it comes to data analysis.

Builders know who the audience is and what they care about, and can add context to the “why” behind the numbers that are not data-driven – maybe you ran a promotion that month, came out with a new product or launched a new website and the data doesn’t reflect that. Or maybe a builder has a specific insight they want to communicate.

This is why we expanded our ability to add custom insights to the stories generated by Quill.

Builders can now create their own insights, in their own words, to help explain the data.

You can also now edit the first sentence of your story.

This is just the beginning – more custom capabilities coming in the next few months.

Have we piqued your interest? Click here to request a demo of Quill.

These features are now available for SaaS users on Quill for Tableau and Quill API. In the near future, we will be releasing these features to Power BI and Qlik. For On Premises users, reach out to your Customer Success Manager if you’re interested in upgrading to the newest installer.

Users for Power BI can now handle stories with up to 30,000 data points (excluding continuous stories with two dimensions) if you upgrade to our latest installer.

Need more help? You can also visit our support sites below.

Quill for Tableau

Quill for Qlik

Quill for Power BI

Request a free trial

Follow Along

Subscribe to our newsletter and stay up to date with all things Narrative Science